In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.
Answer:

cubic metre or 1e-9
Explanation:
•By division. Number of cubic millimetre divided(/) by 1000000000, equal(=): Number of cubic metre.
•By multiplication. 83 mm3(s) * 1.0E-9 = 8.3E-8 m3(s)
Answer:-2.61 m/s
Explanation:
This problem can be solved by the Conservation of Momentum principle, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first car
is the velocity of the first car, to the North
is the mass of the second car
is the mass of the second car, to the South
is the final velocity of both cars after the collision
(4)
Isolating
:
(5)
(6)
Finally:
(7) This is the resulting velocity of the wreckage, to the south
Hi Pupil Here's your answer ::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An Athelete run some distance before taking a long jump because by running the Athelete gives himself larger inertia of motion.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps .....