Answer:
265 J
Explanation:
where KE is kinetic energy, PE is potential energy, m is the mass of an object, v is the speed, h is the height and g is acceleration due to gravity.
Substituting 19.7 Kg for mass, 0.934 for h, 2.93 for v and 9.81 for g then

<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
Answer:
Yosef hypothesis could be stretching of rubber band depends on rubber band's width. It is difficult to stretch a wider rubber band in comparison to a narrow band.
Explanation:
Width of rubber band affect how easily it can be stretched. It is found that it is difficult to to stretch a wider rubber band in comparison to a narrow band because when rubber band is narrow less molecules will be there along its width and hence less restoring force will be there so rubber can be easily stretched. On the other hand when the rubber band is wider it means more molecules are there along its width and hence more restoring force will be there while stretching so it will be difficult to stretch a wider rubber band.