This depends on the direction of the velocity vector to the magnetic field vector. The force is F=q(VxB) ("x" is the cross product.) The max force is when V and B are perpendicular. Then F=qVB = (1.602e-19)(2000)(300) = 9.612e-14 N
Answer is adaptation. An organism develops a trait over time to help survive in its environment called an adaptation. You could take a giraffe for example. A long time ago giraffes actually had short necks, but now since their food is higher they soon developed a longer neck and this is what we now see in the present. This goes for any artic animal. Polar bears and seals have a white fur adaptation to help them blend in with their environment. A chameleon changes colors in order to hide from predators and sneak up on prey. These are all adaptations
Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second
Answer:
V = 192 kV
Explanation:
Given that,
Charge, 
Distance, r = 0.3 m
We need to find the electric potential at a distance of 0.3 m from a point charge. The formula for electric potential is given by :

So, the required electric potential is 192 kV.