Foil the binomials
First: n*n=n^2
Outer: n*-5=-5n
Inner: -3*n=-3n
Last: -3*-5=15
Put it together and simplify
n^2-5n-3n+15
n^2-8n+15
Final answer: A
Answer:
The midpoint is (2 , 1)
Step-by-step explanation:
To find the midpoint, we have to add the corresponding coordinates
[(-5 , 3) + (3 , -1)] / 2
we separate into the corresponding
(-5 + 3) / 2 =
-2 / 2 = -1
(3 - 1) / 2 =
2 / 2 = 1
The midpoint is (2 , 1)
Answer:
1) w₁=4 - i w₂= -4 + i
2) w₁= 3 - i w₂= -3 + i
3) w₁= 1 + 2i w₂= - 1 - 2i
4) w₁= 2- 3i w₂= -2 + 3i
5) w₁= 5 - 2i w₂= -5 + 2i
6) w₁= 5 - 3i w₂= -5 + 3i
Step-by-step explanation:
The root of a complex number is given by:
![\sqrt[n]{z}=\sqrt[n]{r}(Cos(\frac{\theta+2k\pi}{n}) + i Sin(\frac{\theta+2k\pi}{n}))](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bz%7D%3D%5Csqrt%5Bn%5D%7Br%7D%28Cos%28%5Cfrac%7B%5Ctheta%2B2k%5Cpi%7D%7Bn%7D%29%20%2B%20i%20Sin%28%5Cfrac%7B%5Ctheta%2B2k%5Cpi%7D%7Bn%7D%29%29)
where:
r: is the module of the complex number
θ: is the angle of the complex number to the positive axis x
n: index of the root
1) z = 15 − 8i ⇒ r=17 θ= -0.4899 rad
w₁=
=4-i
w₂=
=-1+i
2) z = 8 − 6i ⇒ r=10 θ= -0.6435 rad
w₁=
= 3 - i
w₂=
= -3 + i
3) z = −3 + 4i ⇒ r=5 θ= -0.9316 rad
w₁=
= 1 + 2i
w₂=
= -1 - 2i
4) z = −5 − 12i ⇒ r=13 θ= 0.4426 rad
w₁=
= 2- 3i
w₂=
= -2 + 3i
5) z = 21 − 20i ⇒ r=29 θ= -0.8098 rad
w₁=
= 5 - 2i
w₂=
= -5 + 2i
6) z = 16 − 30i ⇒ r=34 θ= -1.0808 rad
w₁=
= 5 - 3i
w₂=
= -5 + 3i
Answer:
Option (A)
Step-by-step explanation:
Given:
LM ≅ OP
MN ≅ PQ
∠M ≅ ∠P
To Prove:
ΔLMN ≅ ΔOQP
Statements Reasons
1). LM ≅ OP 1). Given
2). MN ≅ PQ 2). Given
3). ∠P ≅ ∠M 3). Given
4). ΔLNM ≅ ΔOQP 4). By the SAS postulate of congruence.
[Side - Angle - Side]
Therefore, Option (A) will be the answer.
Answer:
1r
Step-by-step explanation:
(5r-4)(2r-6r+4)
1(5r-4)+1(2r-6r+4)
5r-4+2r-6r+4
5r+2r-6=1r
1r-4+4
-4+4=0
1r