These are two questions and two answers.
Part 1. Fin the value of the ration of velocity C to velocity D.
Answer: 2
Explanation:
1) Formula: momentum = mass * velocity
2) momentum C = mass C * velocity C
3) momentum D = mass D * velocity D.
4) C and D have the same momentum =>
mass C * velocity C = mass D * velocity D
5) mass C = (1/2) mass D => mass C / mass C = 1/2
6) use in the equation stated in the point 4)
velocit C / velocity D = mass D / mass C
using the equation stated in point 5:
mass D / mass C = 1 / [ mass C / mass D] = 1 / [1/2] = 2
=>
7) velocity C / velocity D = mass D / mass C = 2
Part 2: <span>ratio of kinetic energy C to kinetic energy D.
</span>
Answer: 2
Explanation:
1) formula: kinetic energy KE = (1/2) mass * (velocity)^2
2) KE C = (1/2) mass C * (velocity C)^2
3) KE D = (1/2) mass D * (velocity D)^2
4) KE C / KE D =
(1/2) mass C * (velocity C)^2 mass C (velocity C)^2
--------------------------------------- = --------------- * ---------------------- = (1/2) * (2)^2
(1/2) mass D *( velocity D)^2 mass D v(velocity D)^2
= 4 / 2 = 2
Answer:
0.0072
Explanation
7.2x10^-3= 0.0072
Explanation:
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through. The fault labeled "E" cuts through all three sedimentary rock layers (A, B,and C) and also cuts through the intrusion (D). So the fault must be the youngest formation that is seen and known of.
Answer:
avriage force F = 2722.5 N
Explanation:
For this problem we can use Newton's second law, to calculate the average force and acceleration we can find it by kinematics.
vf² = v₀² - 2 ax
The final carriage speed is zero (vf = 0)
0 = v₀² - 2ax
a = v₀² / 2x
a = 1.1²/(2 0.200)
a = 3.025 m / s²
a = 3.0 m/s²
We calculate the average force
F = ma
F = 900 3,025
F = 2722.5 N