Hi there!
To find the appropriate force needed to keep the block moving at a constant speed, we must use the dynamic friction force since the block would be in motion.
Recall:

The normal force of an object on an inclined plane is equivalent to the vertical component of its weight vector. However, the horizontal force applied contains a vertical component that contributes to this normal force.

We can plug in the known values to solve for one part of the normal force:
N = (1)(9.8)(cos30) + F(.5) = 8.49 + .5F
Now, we can plug this into the equation for the dynamic friction force:
Fd= (0.2)(8.49 + .5F) = 1.697 N + .1F
For a block to move with constant speed, the summation of forces must be equivalent to 0 N.
If a HORIZONTAL force is applied to the block, its horizontal component must be EQUIVALENT to the friction force. (∑F = 0 N). Thus:
Fcosθ = 1.697 + .1F
Solve for F:
Fcos(30) - .1F = 1.697
F(cos(30) - .1) = 1.697
F = 2.216 N
Answer:
The average force exerted on the window due to two snowballs is 6 N
Explanation:
Given:
Mass of snowballs
Kg
Velocity of snowball 
For finding the average force,
Force is equal to the change in momentum,

Here, final velocity is zero so we write,

Where
sec

N
Above value of force is due to one ball, but here given in question there are two ball,

N
Therefore, the average force exerted on the window due to two snowballs is 6 N
what? I guess:
- practice different habits. If you fail don't give up.
- don't always trust people, some are not what they seem.
this question doesn't make any sense...
The answer is c, because ball is falling so its gravitationl potential energy decreases, but it kinetic energy increases. Energy is always conserved.