Frequency = rate of sploosh = 2 per second = 2 Hz.
Period = ( 1/frequency ) = 1/2 second
Speed = (wavelength) x (frequency) = (0.15m) x ( 2/sec) = 0.075 m/s .
You use the equation Velocity = Acceleration X Time. 4x4=16m/s.
The car travels 18m in 3 seconds.
Answer:
How much force is required to cause an object with a mass of 850 kg to accelerate at a rate of 2 meters per second squared (m/s^2)?
Explanation:
<em>1700N
</em>
<em>
Mass multiplied by acceleration gives you the amount of force needed for it.</em>
<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by

where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s

Which is the final velocity of the two railroad cars