The answer is Big Mac size
Adenine , guanine, cytosine and thymine
1 kPa = 7.5 mmHg so 7.0 mmHg / 7.5 mmHg x 1 kPa = .93 kPa
101.3 kPa = 1 atm so 10 kPa / 101.3 kPa x 1 atm = .0987 atm
1 kPa = 7.5 mmHg so 15 kPa x 7.5 mmHg / 1 kPa = 112.5 mmHg
Answer:
Total pressure of the mixture is 12.2 atm
Explanation:
Let's apply the Ideal Gases law to solve this
Total pressure . V = Total moles . R . T
Total moles = 0.4 m of He and 0.6 mole of Ne → 1 mol
P . 2L = 1 mol . 0.082 L.atm/mol. K . 298K
P = ( 1 mol . 0.082 L.atm/mol. K . 298K) /2L
P = 12.2 atm
Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm