In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)
The kinetic energy and the physical state of water depend strongly on the temperature;
- Firstly, The kinetic energy of water on a hot stove is higher than that on the counter in the freezer; that the kinetic energy is directly proportional to the temperature according to the relation:
; where R is the universal gas constant, T is the temperature and NA is Avogadro number.
As the temperature increases, the speed of colliding molecules increases and the kinetic energy increases.
- Secondly, The physical state of water depends on the temperature; water has three states (gas, liquid and solid) depends on the temperature.
- If a glass of water is putt on the counter in the freezer, it will be converted to the solid state (ice).
- And, as if it is putt on a hot stove, it will be vapor (gaseous state).
Answer:
The final dilution is 1:400
Explanation:
Let's analyze what we are told: we have an initial 1:5 dilution of protein lysate. This means that the initial solution (stock solution) was diluted 5 times. Then, from this dilution the student prepared another dilution taking 2 mL of the first dilution in 8 mL of water. This is the same as saying we took 1 mL of first dilution in 4 mL of water (the ratio is the same), so we now have a second 1:4 dilution of the first dilution (1:5). Finally, the student made a third 1:20 dilution, this means that the second dilution was further diluted 20 times.
So, to calculate the final dilution of protein lysate, we have to multiply all the dilution factors of every dilution prepared: in this case we have a final dilution of 1:20, this means we have a factor dilution of 20. But it was previously diluted 4 times, so we have a factor dilution of 20×4 = 80. However, this dilution was also previously diluted 5 times, so the new dilution factor is 80 × 5 = 400
This means that the final dilution of the compound was diluted a total of 400 times compared to the initial concentration of stock solution.
Answer:
option c
Explanation:
as catalyst increases the reaction while activation energy is inversely proportional to rate of reaction, so option c is correct