1bonding and 3non-bonding
(Refer to the attachment for structure
Given:
<span> 2.1 moles of chlorine gas (Cl2) at standard temperature and pressure (STP)
Required:
volume of CL2
Solution:
Use the ideal gas law
PV = nRT
V = nRT/P
V = (2.1 moles Cl2) (0.08203 L - atm / mol - K) (273K) / (1 atm)
V = 47 L</span>
uranium oxide
Hope This Helps! Have A Nice Day!!
The empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
<h3>How to calculate empirical formula?</h3>
The empirical formula of a compound is a notation indicating the ratios of the various elements present in a compound, without regard to the actual numbers.
The empirical formula of the given compound can be calculated as follows:
- Hafnium = 55.7% = 55.7g
- Chlorine = 44.3% = 44.3g
First, we convert mass values to moles by dividing by the molar mass of each element
- Hafnium = 55.7g ÷ 178.49g/mol = 0.312mol
- Chlorine = 44.3g ÷ 35.5g/mol = 1.25mol
Next, we divide each mole value by the smallest
- Hafnium = 0.312 ÷ 0.312 = 1
- Chlorine = 1.25 ÷ 0.312 = 4
Therefore, the empirical formula of a compound found to have 55.7% hafnium and 44.3% chlorine is HfCl4.
Learn more about empirical formula at: brainly.com/question/14044066
#SPJ1
Answer:
Those two horizontal lines.
Explanation:
Hello there!
In this case, when focusing on these heating curves, it is important to say they tend to have two constant-temperature sections and three variable-temperature sections. Thus, from lower to higher temperature, the first constant-temperature section corresponds to melting and the second one vaporization, whereas the three variable-temperature sections correspond to the heating of the solid until melting, the liquid until vaporization and the gas until the critical point.
In such a way, we infer that the boxes referred to constant temperature are referred to a gain in potential energy, that is, the two horizontal lines.
Regards!