Answer:
- <u>The water ballon that was thrown straight down at 2.00 m/s hits the ground first, 0.19 s before the other ballon.</u>
Explanation:
The motions of the two water ballons are ruled by the kinematic equations:
We are only interested in the vertical motion, so that equation is all what you need.
<u>1. Water ballon is thrown horizontally at sped 2.00 m/s.</u>
The time the ballon takes to hit the ground is independent of the horizontal speed.
Since 2.00 m/s is a horizontal speed, you take the initial vertical speed equal to 0.
Then:

<u>2. Water ballon thrown straight down at 2.00 m/s</u>
Now the initial vertical speed is 2.00 m/s down. So, the equation is:

To solve the equation you can use the quadratic formula.

You get two times. One of the times is negative, thus it does not have physical meaning.
<u>3. Conclusion:</u>
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
Current = 3 Amperes
Explanation:
Given the following data;
Quantity of charge = 6 C
Time = 2 seconds
To find how many amps are moving through this wire;
Mathematically, the quantity of charge passing through a conductor is given by the formula;
Quantity of charge = current * time
Substituting into the formula, we have;
6 = current * 2
Current = 6/2
Current = 3 Amperes
when the reflected rays of the mirror meets
Explanation:
When two incident rays go and strike to the mirror, their reflected rays meet and image is formed