Answer:
![R=240m](https://tex.z-dn.net/?f=R%3D240m)
Explanation:
From the question we are told that:
Velocity ![v=25m/s](https://tex.z-dn.net/?f=v%3D25m%2Fs)
Force of friction f = 0
Angle ![\theta=15](https://tex.z-dn.net/?f=%5Ctheta%3D15)
Generally the equation for Radius of curvature is mathematically given by
![R=frac{v^2}{tan\theta *g}](https://tex.z-dn.net/?f=R%3Dfrac%7Bv%5E2%7D%7Btan%5Ctheta%20%2Ag%7D)
![R=frac{25^2}{tan 15 *9.81}](https://tex.z-dn.net/?f=R%3Dfrac%7B25%5E2%7D%7Btan%2015%20%2A9.81%7D)
![R=240m](https://tex.z-dn.net/?f=R%3D240m)
Answer:
The jp2003parker guy is extremely wrong
So he says that the size wont matter and a physical change should occur, but how would the size change without having a physical change occur.
Explanation:
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/
.
3.0 x 10 = k x 5.0
30 = 5k
⇒ k =
................ 1
On the Moon, the gravitational force is
of that on the Earth.
m x
= k x 5.0
= 5k
⇒ k =
............. 2
Equating 1 and 2, we have;
= ![\frac{10m}{30}](https://tex.z-dn.net/?f=%5Cfrac%7B10m%7D%7B30%7D)
m = ![\frac{900}{50}](https://tex.z-dn.net/?f=%5Cfrac%7B900%7D%7B50%7D)
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.