Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.
Answer:
38.4 m/s
Explanation:
a) at t = 3.2s. 
b) at t = 3.2 + Δt. 
c) As Δt approaches 0. We can find the velocity by the ratio of Δx/Δt






As Δt approaches 0, v = 38.4 + 0 = 38.4 m/s
Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.
She does work from the moment she touches the book until she lets it go. Work is anything that requires energy. Therefore, she is working as she picks up the book, carries it, and when she is lifting it onto the shelf.