Answer:
Image formed by a <u>convex mirror</u> is always <u>virtual and erect</u>. When an object is placed at infinity, virtual image is formed at focus and the size of the image is <u>smaller</u>.
<h2>도움이되기를 바랍니다!</h2>
Answer:
C
Explanation:
Coz its like that (ye ik probs wrong ans but ye)
Explanation:
As you can see in the picture, we want the swimmer to go on a straight line, so the speed of the water must be equal to the speed of the swimmer along the x-axis. We also know the value of v, so we can calculate the of the cosine of the angle (alpha) between Vx and V. Thanks to the fundamental relation of gioniometry (cos^2(x) + sin^2(x) = 1) we can find the sine of alpha and calculate Vy. With Vy we can calculate the time that the swimmer will use for reaching the dock: s = Vy * t => t = s/(Vy).
I'll let you do all the calculations, you just have to plug in values.
Answer:
d.
Explanation:
the arrow is starts at 0,0 and ends at 2,2
Answer:
Vf₂ = 2 Vf₁
It shows that final speed of Joe is twice the final speed of Jim.
Explanation:
First, we analyze the final speed of Jim by using first equation of motion:
Vf₁ = Vi + at
where,
Vf₁ = final speed of Jim
Vi = initial speed of Jim = 0 m/s
a = acceleration of Jim
t = time of acceleration for Jim
Therefore,
Vf₁ = at ---------------- equation (1)
Now, we see the final speed of Joe. For Joe the parameters will become:
Vf = Vf₂
Vi = 0 m/s
a = a
t = 2t
Therefore,
Vf₂ = 2at
using equation (1):
<u>Vf₂ = 2 Vf₁</u>
<u>It shows that final speed of Joe is twice the final speed of Jim.</u>