<span>The contact force that acts on objects in a liquid or gas and allows objects to float is called </span>Buoyancy.
D because friction will slow it down going up hills (for safety reasons) and you go really fast going down.
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
A car experiences a deceleration (a) of -41.62 m/s² and comes to a stop (final velocity = v = 0 m/s) after 10.99 m (s).
We can calculate the initial velocity of the car (u) using the following kinematic equation.
![v^{2} = u^{2} + 2as\\\\u = \sqrt[]{v^{2}-2as} = \sqrt[]{(0m/s)^{2}-2(-42.61m/s^{2} )(10.99m)} = 30.60m/s](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%3D%20u%5E%7B2%7D%20%2B%202as%5C%5C%5C%5Cu%20%3D%20%5Csqrt%5B%5D%7Bv%5E%7B2%7D-2as%7D%20%3D%20%5Csqrt%5B%5D%7B%280m%2Fs%29%5E%7B2%7D-2%28-42.61m%2Fs%5E%7B2%7D%20%29%2810.99m%29%7D%20%3D%2030.60m%2Fs)
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
Learn more: brainly.com/question/14851168
Answer:

Explanation:
The exponential density function is given as


To find probability that bulb fails with the first 300hrs, we integrate from o to 300:


Hence probability of bulb failing within 300hrs is 25.92% or 0.2592