The angular speed of the playground ride is determined as 0.3 rad/s.
<h3>
What is angular speed?</h3>
Angular speed is the rate at which an object changes it angles which we measure in radians in a given time.
<h3>
Angular speed of the ride</h3>
The angular speed of the ride if the ride makes one complete revolution is calculated as follows;
ω = θ/t
ω = 2π/t
where;
- ω is angular speed of the ride
- t is time of motion of the ride
one complete revolution = 2π radians
ω = 2π/21
ω = 0.3 rad/s
Thus, the angular speed of the playground ride is determined as 0.3 rad/s.
Learn more about angular speed here: brainly.com/question/24158647
#SPJ1
The complete question is below;
A playground ride requires 21 seconds to make one complete revolution, what is angular speed of the ride in radian per second.
yes this is correct good job
Answer:
λ= 5.24 × 10 ⁻² nC/cm
Explanation:
Given:
distance r = 4.10 cm = 0.041 m
Electric field intensity E = 2300 N/C
K = 9 x 10 ⁹ Nm²/C
To find λ = linear charge density = ?
Sol:
we know that E= 2Kλ / r
⇒ λ = -E r/2K (-ve sign show the direction toward the wire)
λ = (- 2300 N/C × 0.041 m) / 2 × 9 x 10 ⁹ Nm²/C
λ = 5.24 × 10 ⁻⁹ C/m
λ = 5.24 nC/m = 5.24 nC/100 cm
λ= 5.24 × 10 ⁻² nC/cm
When a source of light moves away from you, you see the characteristic lines in its spectrum move toward slightly longer wavelengths. Lines in the visible part of the spectrum move toward the red end.
When a source of light moves toward you, you see the characteristic lines in its spectrum move to slightly shorter wavelengths. Lines in the visible part of the spectrum move toward the violet end.
We see these 'shifts' when we look at the spectra of stars. "Red shift" is the change in the spectrum of a star when it's moving away from us, and "Blue shift" is the change when it's moving toward us. These measurements are the only way we have of measuring the radial motion of stars, and their speeds toward or away from us.
The whole subject of why a spectrum shifts toward longer or shorter wavelengths was explained by the Austrian physicist Christian Doppler in 1842, and it's known as the "Doppler Shift" in honor of him and his work.
Answer:
High altitude
Explanation:
Infrared rays are absorbed by water vapor in the lower parts of our atmosphere such as near the sea level.Infrared telescopes positioned on high mountains can observe the cosmos at a wavelength near-infrared. In this case, this telescope is positioned on a mountain top where the altitude is high.