Atomic mass is the answer!!
Explanation: An elements atomic number won’t be able to change
Answer:
The correct option is;
The gas particles move faster, have the same molecular composition, and have weaker attractions between them than the liquid particles
Explanation:
The properties of the gas molecules in comparison to liquids are
1) The gas molecules are widely spread out
2) After evaporation and while in conditions favorable to the gaseous state, the kinetic energy of a gas is larger than the inter molecular attractive forces
3) A gas fills the container in which it is placed
For liquids
1) There are strong intermolecular forces holding the molecules together in a liquid
2) Liquid attractive forces in a liquid are strong enough to hold neighboring molecules
3) The volume of a liquid is definite.
Answer:
B) number of electrons
Explanation:
The two species:
K+ and Cl- have the same number of electrons.
A neutral atom of K has 19 electrons
A neutral atom of Cl has 17 electrons
Now,
To form K+, K will have to lose an electron and then the number of electrons becomes 18
To form Cl-, Cl will have to gain an electrons and then the number of electrons becomes 18
So, therefore, the number of electrons on both species is 18
<h3><u>Answer;</u></h3>
The statements that are True are;
- Upon binding a molecule of oxygen, Hb undergoes a conformational change that makes the binding of subsequent O2 molecules easier.
- The conformational change induced in Hb upon binding oxygen is the result of a small movement (0.2 Å) of the iron cation in the center of heme.
- Site-directed mutagenesis studies have indicated that the cooperativity of O2 binding in Hb is attributable to the movement of the F helix in Hb.
<h3><u>Explanation</u>;</h3>
- Hemoglobin is a key pigment in the blood that transports oxygen gas to all the tissues in the body. It is made up of two types of chains; that is two alpha chains and two beta chains.
- in its deoxygenated state hemoglobin has a low affinity for oxygen compared to myoglobin. When oxygen is bound to the first subunit of hemoglobin it leads to subtle changes to the quaternary structure of the protein. This in turn makes it easier for a subsequent molecule of oxygen to bind to the next subunit.