Answer:
(a) X electrode
(b) Y electrode
(c) Y electrode
(d) X electrode
(e) Y electrode
Explanation:
<em>A galvanic (voltaic) cell has the generic metals X and Y as electrodes. X is more reactive than Y, that is, X more readily reacts to form a cation than Y does.</em>
In the X electrode occurs the oxidation whereas in the Y electrode occurs the reduction.
Oxidation: X(s) → X⁺ⁿ(aq) + n e⁻
Reduction: Y⁺ˣ(aq) + x e⁻ → Y(s)
<em>Classify the descriptions by whether they apply to the X or Y electrode.
</em>
<em>(a) anode.</em> Is where the oxidation takes place (X electrode).
<em>(b) cathode.</em> Is where the reduction takes place (Y electrode).
<em>(c) electrons in the wire flow toward.</em> Electrons in the wire flow toward the cathode (Y electrode).
<em>(d) electrons in the wire flow away.</em> Electrons in the wire flow away from the anode (X electrode).
<em>(e) cations from salt bridge flow toward.</em> Cations from the salt bridge flow toward the cathode (Y electrode) to maintain the electroneutrality.
A buffer is a solution which resists changes to it pH when a small quantity of acid or base is added to it.
<h3>What is a buffer?</h3>
A buffer is a solution which resists changes to it pH when a small quantity of acid or base is added to it.
Buffers are made from solutions of weak acids and their salts or weak bases and their salts.
<h3>What is pH?</h3>
The pH of a solution is the negative logarithm to base 10 of yhe hydrogen ion concentration of the solution.
Solutions of low pH have high concentration of hydrogen ions while solutions of high pH have high hydrogen ion concentration.
Learn more about about buffers and pH at: brainly.com/question/22390063
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
Answer:
half-life of 5,700 ± 40 years
Explanation: