Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency
Answer:
40 km/h
Explanation:
First...
Look at the formula speed is equal to the distance over time or s = d/t.
Next...
Use the formula: 240/6.0
Finally...
Solve: 40
So the answer: 40 km/h
Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude, 
Wavelength, 
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:

where
= angular speed of the particle
Thus

Now,
The wave speed is given by:

Now,
The ratio is given by:


Answer:
option C
Explanation:
given,
Force by the engine on plane in West direction = 350 N
Frictional force on the runway = 100 N in east
force exerted by the wind = 100 N in east
net force and direction = ?
consider west to be positive and east be negative.
when airplane will be moving there will be frictional as well as wind resistance will be acting in opposite direction of airplane
Net force = 350 N - 100 N - 100 N
= 150 N
as our answer comes out to be positive so the airplane will be moving in West
hence, the correct answer is option C