Answer:(a) 4775.2Hz (b) 4.06m/s (c) 19382.15m/s²
Explanation: Given that the frequency of oscilation f, is 760Hz and the maximum displacement x, is 0.85mm= 0.00085m
(a) Angular frequency w= 2πf
w= 2π × 760 = 4775.2Hz
(b) Maximum speed v is given as the product of angular frequency and maximum displacement
V=wx
V= 4775.2 × 0.00085
V= 4.06m/s
(c) The maximum acceleration a
= w²x
= (4775.2)² × (0.00085)
a= 19382.15m/s².
Answer: 2940 J
Explanation: solution attached:
PE= mgh
Substitute the values:
PE= 10kg x 9.8 m/s² x 30 m
= 2940 J
Answer:
dart
Explanation:
dart and sun and water so that the plant be okay
Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k
Answer:
The resistance in first case is 12 Ω, power delivered is 12 W, and potential difference is 0.01 V
Explanation:
Given:
(A)
Current
A
Voltage
V
For finding the resistance,



12Ω
(B)
For finding power delivered,


Watt
(C)
For finding the potential difference,



V
Therefore, the resistance in first case is 12 Ω, power delivered is 12 W, and potential difference is 0.01 V