Given:
u = 6.5 m/s, initial velocity
a = 1.5 m/s², acceleration
s = 100.0 m, displacement
Let v = the velocity attained after the 100 m displacement.
Use the formula
v² = u² + 2as
v² = (6.5 m/s)² + 2*(1.5 m/s²)*(100 m) = 342.25 (m/s)²
v = 18.5 m/s
Answer: 18.5 m/s
To measure the mass, you would use a balance. To measure the volume, you can use a variety of ounces, cups, pints, quarts, and gallons. Good luck!
Consider a car<span> that travels between points A and B. The </span>car's<span> average </span>speed<span> can be ..... the </span>car<span> to </span>slow down<span> with a </span>constant acceleration<span> of </span>magnitude 3.50 m/s2<span>. </span>If<span> the </span>car comes<span> to a </span>stop<span> in a </span>distance<span> of</span>30.0 m<span>, what was the </span>car's original speed<span>? ... A </span>car<span> is </span>traveling<span> at 26.0 </span>m<span>/s when the </span>driver suddenly applies<span> the </span>brakes<span>, ...</span>
Answer:
Scenario A, B and E is True.
Explanation:
Scenario A) True. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario B) True. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario C) False. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario D) False. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario E) True. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.
Scenario F) False. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.