-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
cardiac muscle is striated. Uniquely, the cells of this kind of muscle are joined strongly together at adherens junctions that “enable the heart to contract forcefully without ripping the fibers apart.”
Answer:
Required energy Q = 231 J
Explanation:
Given:
Specific heat of copper C = 0.385 J/g°C
Mass m = 20 g
ΔT = (50 - 20)°C = 30 °C
Find:
Required energy
Computation:
Q = mCΔT
Q = 20(0.385)(30)
Required energy Q = 231 J
Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s
Answer:A solenoid is a simple electromagnetic device consisting of a coiled electric wire, wrapped in a 3D circular pattern. When electric current is passed through the wire, the solenoid acts like a magnet with N and S poles at the ends of the coil.
When a ferromagnetic material rod is permanently placed inside the solenoid, the metal greatly increases the magnetic effect and becomes a permanent electromagnet. Moreover, it can also be used as an electrical switch by drawing in or pushing out a ferromagnetic material like an iron rod. Depending on the directions of the rod and the electrical current the switching action takes place.
Given figure represents the solenoid as electromagnet and the switching action.
Explanation: