I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4
Answer:
if somthing is warm or if somthing moves it usally has energy
Answer:
180°
Explanation:
Friction, if it exists, ALWAYS opposes motion or attempted motion.
Answer:
(A) considering the charge "q" evenly distributed, applying the technique of charge integration for finite charges, you obtain the expression for the potential along any point in the Z-axis:

With
been the vacuum permittivity
(B) The expression for the magnitude of the E(z) electric field along the Z-axis is:

Explanation:
(A) Considering a uniform linear density
on the ring, then:
(1)⇒
(2)⇒
(3)
Applying the technique of charge integration for finite charges:
(4)
Been r' the distance between the charge and the observation point and a, b limits of integration of the charge. In this case a=2π and b=0.
Using cylindrical coordinates, the distance between a point of the Z-axis and a point of a ring with R radius is:
(5)
Using the expressions (1),(4) and (5) you obtain:

Integrating results:
(S_a)
(B) For the expression of the magnitude of the field E(z), is important to remember:
(6)
But in this case you only work in the z variable, soo the expression (6) can be rewritten as:
(7)
Using expression (7) and (S_a), you get the expression of the magnitude of the field E(z):
(S_b)