Answer:
v = 10 m/s
Explanation:
Given that,
Distance covered by a sprinter, d = 100 m
Time taken by him to reach the finish line, t = 10 s
We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,
v = d/t

Hence, his average velocity is 10 m/s.
Answer:
The correct option is D
Explanation:
In trying to achieve what the student wanted to see, which is to see the relationship between the weight the cord can hold and how long the cord will stretch. Since the origin of the graph is from zero, the value plotted on the vertical axis would be just the length caused by each weights. Thus, <u>the original length would have to be subtracted from the measured length to determine the actual length caused by the weight added to the cord</u>.
False’ because it is a force that makes a body follow a curved path
Magnitude of the force of tension: 139 N
Explanation:
The surface of the ramp here is assumed to be the positive x-direction.
To solve this problem and find the magnitude of the force of tension, we have to analyze only the situation along the x-direction, since the force of tension lie in this direction.
There are three forces acting along the x-direction:
- The force of tension,
, acting up along the plane - The force of friction,
, acting down along the plane - The component of the weight in the x-direction,
, acting down along the plane
We know that the magnitude of the weight is

So its x-component is

The net force along the x-direction can be written as

And therefore, since the net force is 98 N, we can find the magnitude of the force of tension:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly