Answer:
T = 3.23 s
Explanation:
In the simple harmonic movement of a spring with a mass the angular velocity is given by
w = √ K / m
With the initial data let's look for the ratio k / m
The angular velocity is related to the frequency and period
w = 2π f = 2π / T
2π / T = √ k / m
k₀ / m₀ = (2π / T)²
k₀ / m₀ = (2π / 3.0)²
k₀ / m₀ = 4.3865
The period on the new planet is
2π / T = √ k / m
T = 2π √ m / k
In this case the amounts are
m = 6 m₀
k = 10 k₀
We replace
T = 2π√6m₀ / 10k₀
T = 2π √6/10 √m₀ / k₀
T = 2π √ 0.6 √1 / 4.3865
T = 3.23 s
Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We have following information:
m₁=3 kg
m₂=? kg
v₁=x m/s
v₂=0 m/s
v'1 = v'2 = 1/3 * v₁
Now we insert given information and solve for m₂:
3*v₁ + 0*? = 3*1/3*v₁ + m₂*1/3*v₁
3v₁ = v₁ + m₂*1/3*v₁
2v₁ = m₂*1/3*v₁
2 = m₂*1/3
m₂= 6kg
Mass of second mud ball is 6kg.
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps