Answer:
Multiple answers:
1. Power output P=17.59W
2.Intensity 160m I=17.6W/
3. dB = 77.3
4. f=178.5 Hz
Explanation:
First one comes from the expression

where<em> I </em>is the intensity, <em>P </em>is the power and <em>r </em>is the radio of the spherical wave, or in this case, the distance <em>x</em>. I solved for the Power by multiplying Intensity with the area (4
Second one is done with:

Solving for Intensity 2, the result mentioned.
The third is simply computed with

And finally the last one is done with doppler effect, taking into account the speed of the air as in 10ºC 337m/s.

Where <em>Finitial</em> is the frequency emitted and <em>s</em> is the speed of the sound. The wind blowing in positive is, in principle, going away of the observer.
The answer to this question is True.
Answer:
d = 1.07 mile
Explanation:
The rationale for this method is that the speed of light is much greater than the speed of sound, the definition of speed in uniform motion is
v = d / t
d = v t
the speed of sound is worth
v = 343 m / s
Therefore, the speed of sound must be multiplied by time to do this, all the units must be in the same system, as the distance in miles is requested
v = 343 m/s (1mile/1609 m) (3600s/1 h) = 343 (2.24) = 767.4 mile/h
v = 343 m / s (1 mile / 1609 m) = 0.213, mile/ s
If the measured time is t = 5s we multiply it by the speed
we substitute
d = 0.213 5
d = 1.07 mile
If you want to calculate the speed, this method in general is not widely used, since you must know the distance where the lightning occurred, which is relatively complicated.
Because in the outcome your making a profit because the transportation would be cheaper for your company