A baseline for experimental investigation is provided by an hypothesis. This is a must before conducting experiments. Also, it is the hypothesis that is being proved by doing the experiments. So, hypothesis is very important in research studies. Hope this answers the question.
When, it donates electons.
as for example take
NaCl ( sodium chloride)
it's an ionic compund,
that means it is formed by donating or gaining electrons
Na is writen first than, it must be electropositive i.e it has donated electons which made it positive and the clorine gains electron so it's electronegative.
Na is positive because
as we know it's atomic number is 11 that means it has 11 protons and 11 electrons
now, when it donate electon it has, greater number of protons whose change is +ve so the atom becomes overall positively charged ion or cation.
and something same happens in clorine and because it gains one electron and the number of electrons increase in it by 1 whise charge is -ve so, the atom becomes negatively charged ion or anion which has a -1 charge.
Nitrogen has 5 valence electrons (ve-), so a diatomic nitrogen molecule will have twice as many, 10 valence electrons. Then, just draw electrons in pairs of 2 until you both get ride of all of them (reach 0) and you fill every atom (eight electrons each). It can be drawn either way, the important thing is that there are 3 electron pairs shared between the two atoms.
For snow to fall to the ground, the temperature must be cold both up in the clouds where snowflakes form, and down at ground level. If the air near ground level is too warm, the snow will melt on its way down, changing to rain or freezing rain. Moisture is needed to form clouds and precipitation.
This problem is asking for the percent by mass of hydrogen in hydrofluoric acid. At the end, the answer turns out to be D. 5% as shown below:
<h3>Percent compositions:</h3>
In chemistry, percent compositions are used for us to know the relative amount of a specific element in a compound. In order to do so for hydrogen, we use the following formula, which can also be applied to any other element in a given compound:

Where
stands for the atomic mass of hydrogen and
for the molar mass of hydrofluoric acid. In such a way, we plug in the atomic masses of hydrogen (1.01 g/mol) and fluorine (19.0 g/mol) to obtain:

Learn more about percent compositions: brainly.com/question/12247957