Answer:
<h2>The answer is 4.0 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 40 g
volume = 10 mL
The density of the object is

We have the final answer as
<h3>4.0 g/mL</h3>
Hope this helps you
The last-Hypothesis Experiment
You are given
200 grams of H2O(s) at an initial temperature of 0°C. you are also given the
final temperature of water after heating at 65°C. You are required to get the
total amount of heat to melt the sample. The specific heat capacity, cp, of
water is 4.186 J/g-°C. Let us say that T1 = 0°C and T2 = 65°C. The equation for
heat, Q, is
Q = m(cp)(T2-T1)
Q = 200g(4.186
J/g-°C )(65°C - 0°C)
<u>Q =
54,418J</u>
Answer:
misteri Cell ini quest ia half-life of beauty of misteri best, of Cell can't answer =
Explanation:
![\sqrt[ \geqslant { { | \geqslant | \geqslant \sqrt[ \gamma \% log_{ \tan( \sqrt[ < \pi \sqrt[ | \geqslant \sqrt[ < \leqslant |x| ]{y} | \times \frac{?}{?} ]{?} ]{?} ) }(?) ]{?} | | }^{2} }^{?} ]{ \sqrt[ < \gamma log_{ \frac{ | \geqslant y \sqrt[ |x \sqrt{ |?| } | ]{?} | }{?} }(?) ]{?} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B%20%5Cgeqslant%20%20%7B%20%7B%20%7C%20%5Cgeqslant%20%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%5Cgamma%20%5C%25%20log_%7B%20%5Ctan%28%20%5Csqrt%5B%20%3C%20%5Cpi%20%5Csqrt%5B%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%3C%20%20%5Cleqslant%20%20%7Cx%7C%20%5D%7By%7D%20%7C%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%29%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7C%20%7C%20%7D%5E%7B2%7D%20%7D%5E%7B%3F%7D%20%5D%7B%20%5Csqrt%5B%20%3C%20%20%5Cgamma%20%20log_%7B%20%5Cfrac%7B%20%7C%20%5Cgeqslant%20y%20%5Csqrt%5B%20%7Cx%20%5Csqrt%7B%20%7C%3F%7C%20%7D%20%7C%20%5D%7B%3F%7D%20%7C%20%7D%7B%3F%7D%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7D%20)
Answer:
The density of the swimmer is 0.0342 lbm/in3.
This value makes sense as the density of the body is very similar to the water.
Explanation:
If the swimmers is floating, the weight of the swimmer must be equal to the upward buoyant force.
We can express the weight force as the product of density and volume of the swimmer.
Then

It makes sense as the density of the body is very similar to the water.