Without solving for the dipole moment, we can easily determine which among the common gases has the smallest dipole moment just by determining the differences in their electronegativity. The greater the difference in the electronegativity, the higher is the value of the dipole moment.
From the given above, there are obvious differences between the electronegativity between the atoms composing LiF, ClF, and HF. For Cl2, since this is the same molecule then, the difference in the electronegativity is zero.
Answer: Cl2.
Answer:
I don't know
Explanation:
pls I need a little bit answer
Answer:
5.5 L
Explanation:
Step 1: Given data
- Initial volume (V₁): 6.5 L
- Initial pressure (P₁): 840 mmHg
- Initial temperature (T₁): 84 °C
- Final pressure (P₂): 760 mmHg (standard pressure)
- Final temperature (T₂): 273.15 K (standard temperature)
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C + 273.15
K = 84 °C + 273.15 = 357 K
Step 3: Calculate the final volume of the gas
We will use the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 840 mmHg × 6.5 L × 273.15 K / 357 K × 760 mmHg = 5.5 L
Answer:
<h2>Density = 0.8 g/cm³</h2>
Explanation:
The density of an object can be found using the formula
<h3>

</h3>
From the question
mass of kerosene = 36.4 g
volume of kerosene = 45.6 mL
To find the density substitute the values into the above formula and solve
We have
<h3>

</h3>
= 0.7982
We have the final answer as
<h3>Density = 0.8 g/cm³</h3>
Hope this helps you
Answer:
a) 1
b) from a common ancestor
Explanation:
pls give brainlyist