Answer:
Explanation:
When you are in the laboratory and take a direct sniff of the chemicals you are using, you run the risk of damaging your mucous membranes or your lungs. When it is necessary to smell chemicals in the lab, the proper technique is to cup your hand above the container and waft the air toward your face.
Answer:
The standard enthalpy of formation of methanol is, -238.7 kJ/mole
Explanation:
The formation reaction of CH_3OH will be,

The intermediate balanced chemical reaction will be,
..[1]
..[2]
..[3]
Now we will reverse the reaction 3, multiply reaction 2 by 2 then adding all the equations, Using Hess's law:
We get :
..[1]
..[2]
[3]
The expression for enthalpy of formation of
will be,



The standard enthalpy of formation of methanol is, -238.7 kJ/mole
Exothermic reaction is where there is release of energy during a reaction
The enthalpy of exothermic reaction is negative
The relation between energy of products, reactants and enthalpy of reaction is
Enthalpy of reaction = sum of enthalpy of formation of products - sum of enthalpy of formation of reactants
.
As enthalpy of reaction is negative, it means the enthalpy of products is less than the enthalpy of reactants so answer is
:
In an exothermic reaction the energy of the product is less than the energy of the reactants.
Answer:
10 Litre
Explanation:
Given that ::
v1 = 25L ; n1 = 1.5 mole ; v2 =? ; n2 = (1.5-0.9) = 0.6 mole
Using the relation :
(n2 * v1) / n1 = (n2 * v2) / n2
v2 = (n2 * v1) / n1
v2 = (0.6 mole * 25 Litre) / 1.5 mole
v2 = 15 / 1.5 litre
v2 = 10 Litre