Answer:
The current needed is 1790.26 A
Explanation:
Given;
magnitude of magnetic field, B = 1.5 T
length of the solenoid, L = 1.8 m
diameter of the solenoid, d = 75 cm = 0.75 m
The magnetic field is given by;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
I is current in the solenoid
N is the number of turns, calculated as;

The current needed is calculated as;

Therefore, the current needed is 1790.26 A.
Answer:
The correct solution is:
(a) 
(b) 
(c) 
(d) 
Explanation:
The given values are:
Effective duration of the flash,
ζ = 0.25 s
Average power,


Average voltage,

Now,
(a)
⇒ 
On substituting the values, we get
⇒ 
⇒ 
(b)
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
(c)
⇒ 
⇒ 
⇒ 
(d)
As we know,
⇒ 
⇒ 
⇒ 
⇒ 
An Olympic high diver has gravitational potential energy because of her height. As she dives, kinetic energy becomes of her energy just before she hits the water.
Gravitational potential energy is the energy possessed or acquired by an object due to a change in its position when it is present in a gravitational field. In simple terms, it can be said that gravitational potential energy is an energy that is related to gravitational force or to gravity.
Kinetic energy is the energy of motion, observable as the movement of an object, particle, or set of particles.
When the high diver is standing stable and not moving , that diver has a gravitational potential energy because of the height . The moment she dives , before hitting the water , from being stationary she gained some momentum and come in motion , due to motion her gravitational potential energy will change to kinetic energy before hitting the ground.
To learn more about Gravitational potential energy here
brainly.com/question/15978356
#SPJ4
The impulse J is equal to the magnitude of the force applied to the cannonball times the time it is applied:

But the impulse is also equal to the change in momentum of the cannonball:

If we put the two equations together, we find

And since we know the magnitude of the average force and the time, we can calculate the change in momentum:
Answer:
-2.79 m/s²
Explanation:
Given:
v₀ = 20 m/s
v = 11 m/s
Δx = 50 m
Find: a
v² = v₀² + 2aΔx
(11 m/s)² = (20 m/s)² + 2a (50 m)
a = -2.79 m/s²
Round as needed.