The vaccine ofcourse. They helped in making the vaccine.
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
Test:
Performing a Litmus Test
Result:
Litmus paper gives the user a general indication of acidity or alkalinity as it correlates to the shade of red or blue that the paper turns.
- To test the pH of a substance, dip a strip of litmus paper into the solution or use a dropper or pipette to drip a small amount of solution onto the litmus paper.
- Blue litmus paper can indicate an acid with a pH between 4 and 5 or lower.
- Red litmus paper can show a base with a pH greater than 8.
- If a solution has a pH between 5 and 8, it will show little color change on the litmus paper.
- A base tested with blue litmus paper will not show any color change, nor will an acid tested with red litmus paper register a change in color.
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:
