Answer:
139.514 metres
Explanation:
Initial velocity of the truck = 6.6 m/s
Acceleration of the truck = 2.8 m/s^2
Time interval = 7.9 s
Therefore we use the formula,
s = ut + 1/2 at^2
*where s(the distance travelled)...u(the initial velocity)...t(the time period)
; s = 6.6(7.9) + 1/2 (2.8)(7.9)^2
; s = 52.14 + 87.374
The distance moved by the truck = 139.514m
Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2
Answer:
doubled the initial value
Explanation:
Let the area of plates be A and the separation between them is d.
Let V be the potential difference of the battery.
The energy stored in the capacitor is given by
U = Q^2/2C ...(1)
Now the battery is disconnected, it means the charge is constant.
the separation between the plates is doubled.
The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.
C' = C/2
the new energy stored
U' = Q^2 / 2C'
U' = Q^2/C = 2 U
The energy stored in the capacitor is doubled the initial amount.
<span>It's close to the sun without much atmosphere, so it's characterized by </span><span>very extreme temperatures.
Happy studying ^_^</span>
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.

Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.