Given that a hot air balloon lifts 50 meters vertically into the air and then comes back down.
The displacement is the distance covered in a specific direction.
When the balloon is going up, the displacement is positive. and when the balloon is coming down, the displacement is negative.
The total displacement = 50 - 50 = 0
The distance is a measurement of length between to different points or position.
For distance, there is no need to consider direction. There is no consideration for positive or negative signs
While the distance = 50 + 50 = 100 meters
Therefore, the correct answer is C
That is, The displacement is zero and the distance is 100 meters
Learn more on ; brainly.com/question/24662122
Answer:
Explanation:
The voltage of a disconnected charged capacitor increases when the plate area is decreased.
When plate area decreases , capacitance C decreases , but charge Q remains constant .
Q = C V where C is capacitance and V is voltage .
when C decreases , V increases for keeping Q constant .
So the statement is true.
The electric field is dependent on the charge density on the plates.
This statement is true .
The voltage of a connected charged capacitor remains the same when the plate area is decreased .
For a connected capacitor , V or voltage is constant which is equal to voltage of charging battery .
So the statement is true .
Plant trees around the perimeter of his fields
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m