<h2>
Relationship Between Frequency and Period</h2>
The frequency and the period are inversely proportional.
where T is the period
<h2>Solving the Question</h2>
We're given:
- <em>v</em> = 340 m/s
- <em>f</em> = 1000 Hz
Because the frequency and the period are reciprocals of each other, we can find the period of the sound by finding the reciprocal of the frequency:

<h2>Answer</h2>

Explanation:
My sources says "Inertia is an intrinsic characteristic of the object related to its mass. Inertia tells you how much force it will take to cause a particular acceleration on the object. Momentum is a function of an object's mass and velocity. Momentum is a measure of the kinetic energy of the object."
Hopes this helps!
If you feel this answer is correct please mark my answer as the most brainliest, please and thank you!
Answer:
a. Technician A
Explanation:
Technician A says that a MAF sensor is a high-authority sensor and is responsible for determining the fuel needs of the engine based on the measured amount of air entering the engine. Technician B says that a cold wire MAF sensor uses the electronics in the sensor itself to heat a wire 20°C below the temperature of the air entering the engine. Who is right
MAF wich stands for mass airflow sensor determines the mass of air flowing into the engine's air intake system. ... , the wire cools When air flows past the wire, decreasing its resistance, thereby more current flows through the circuit. When the MAf goes bad, it can not sense the amount of air intake into the engine.
Answer:
0.19
Explanation:
mass of block, m = 40 kg
F = 150 N
Angle make with the horizontal, θ = 60 degree
Let μ be the coefficient of kinetic friction
The component of force along horizontal direction is F Cos θ
= 150 cos 60 = 75 N
As it is moving with constant velocity it mean the acceleration of the block is zero.
Applied force in horizontal direction = friction force
75 = μ x Normal reaction
75 = μ x m x g
75 = μ x 40 x 9.8
μ = 0.19
Thus, the coefficient of kinetic friction is 0.19.
Ultraviolet light with a wavelength shorter than visible light and a higher radiant energy than visible light.
The shorter the wavelength, the higher the frequency and energy.