Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
A distinct layer within a soil profile is called a soil horizon.
Explanation:
Take north to be positive and south to be negative.
a = (v − v₀) / t
a = (-4.5 m/s − 4.5 m/s) / 8 s
a = -1.125 m/s²
The acceleration is 1.125 m/s² south.
Answer: (1, 30), (2,10), (3,40), (4,20)
Explanation:
Heat = change in internal energy + Work done The internal energy of a system = heat added and mechanical work done by the system, i.e. U = Q + W rearranging the formula above, will give us: Q = deltaU + W
Q = U - W = 604 kJ - 43.0 kJ = 561,000 J would be the answer.