1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
3 years ago
14

An 8.00- W resistor is dissipating 100 watts. What are the current through it and the difference of potential across it?

Physics
1 answer:
hjlf3 years ago
8 0

Answer:

I= 3.5 amps

Explanation:

Step one:

given data

rating of resistor R= 8 ohms

power P= 100W

Required

The current I

Step two

Yet this power is also given by

P = I^2R

make I subject of the formula we have

I= \sqrt{\frac{P}{R} }

substitute

I= \sqrt{\frac{100}{8} }\\\\I=\sqrt{12.5}\\\\I= 3.5 amps

You might be interested in
Weight is influenced by which of the following
nignag [31]

Out of the given options, weight is influenced by mass and gravity

Answer: Option A

<u>Explanation: </u>

The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.

The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.

The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.

                                  W=F=m \times g

6 0
3 years ago
A window washer who does not want to change his position will want the forces acting on him to be ____________.
natali 33 [55]
My answer is a balanced
6 0
2 years ago
Which process do plants use to turn sunlight into food energy? photosynthesis cellular respiration transpiration evaporation
Aloiza [94]
The answer is A. Photosynthesis 
have a good day!
5 0
3 years ago
Read 2 more answers
A swift blow with the hand can break a pine board. As the hand hits the board, the kinetic energy of the hand is transformed int
Stells [14]

Answer:

A. The hand must move with a velocity of 6.98 m/s to break the board.

B. Average force on the hand = 1025 N

Explanation:

A.To determine the speed the hand must move with to break the board, the force workdone in breaking the board is found first.

Workdone = force × distance

Minimum force required = 870 N;

Distance moved by board/Deflection in order to break = 1.4 cm = 0.014 M

Workd done = 870 N × 0.014 m = 12.18 Nm or 12.18 J

This work done = Kinetic energy of the hand

Kinetic energy = mv²/2 ; where m is mass and v is velocity

Mass of hand = 0.50 Kg, velocity = ?, K.E. = 12.18 J

v² = 2 KE/m

v = √2KE/m

v = √(2 × 12.18/0.50)

v = 6.98 m/s

Therefore, the hand must move with a velocity of 6.98 m/s to break the board.

B. Average force on the hand

This can be determined using the equation of motion, v² = u² + 2as to find acceleration, since force = mass × acceleration

From the equation of motion, a = v² - u²/2s

At rest, v = 0, u = 6.98, s = 1.2 cm = 0.012 m

a = 0² - 6.98²/ 2 × 0.012

a = -2030 m/s²

Force = 2030 m/s² × 0. 50 kg = 1015 N

Therefore, Average force on the hand = 1025 N

3 0
2 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
Margaret [11]

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

3 0
3 years ago
Read 2 more answers
Other questions:
  • A particle has an acceleration of +6.24 m/s2 for 0.300 s. At the end of this time the particle's velocity is +9.81 m/s. What was
    5·2 answers
  • 6. Give an example of an energy transformation from nuclear to electromagnetic.
    12·1 answer
  • Consider a long cylindrical charge distribution of radius R with a uniform charge density rho. Find the electric field at distan
    9·1 answer
  • An atom of carbon 14 has_______ protons and________neutrons. Fill in the blanks.
    13·2 answers
  • Th e heat capacity of air is much smaller than that of water, and relatively modest amounts of heat are needed to change its tem
    12·2 answers
  • If you are driving 128.4 km/h along a straight road and you look down for 3.0s, how far do you travel during this inattentive pe
    7·1 answer
  • A pickup truck is carrying a 10.0 kgkg toolbox, but the tailgate of the truck is missing, so the box can slide out if it starts
    15·1 answer
  • 1
    12·1 answer
  • Topic: Chapter 10: Projectory or trajectile?
    13·1 answer
  • an airplane has a maximum velocity of 160km/h in still air. calculate its maximum velocity when it travels in air with a crosswi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!