<h2>The increase in length = 1.87 x 10⁻²</h2>
Explanation:
When copper rod is heated , its length increases
The increase in length can be found by the relation
L = L₀ ( 1 + α ΔT )
here L is the increased length and L₀ is the original length
α is the coefficient of linear expansion and ΔT is the increase in temperature .
The increase in length = L - L₀ = L₀ x α ΔT
Substituting all these value
Increase in length = 27.5 x 1.7 x 10⁻⁵ x 35.9
= 1.87 x 10⁻² m
Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
Answer:
1000 kgm²/s, 400 J
1000 kgm²/s, 1000 J
600 J
Explanation:
m = Mass of astronauts = 100 kg
d = Diameter
r = Radius = 
v = Velocity of astronauts = 2 m/s
Angular momentum of the system is given by

The angular momentum of the system is 1000 kgm²/s
Rotational energy is given by

The rotational energy of the system is 400 J
There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

Energy

The new energy will be 1000 J
Work done will be the change in the kinetic energy

The work done is 600 J
Answer:
true?
Explanation:
Im positive but not 100% sure wait for someone else to answer and see if they say the same.
The answer is the third graph