1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ratelena [41]
3 years ago
11

A 100 kg bag of sand has a weight on 100 N. When dropped its acceleration is what?

Physics
2 answers:
Karo-lina-s [1.5K]3 years ago
8 0

Answer:

<h2>Gravity.</h2>

Explanation:

If you are holding the bag of sand, the only acceleration in the system is gravity, because is a vertical movement. So, a = 9.81 \frac{m}{s^{2} }

We are assuming that is vertical movement because is say ''dropped'', which is a term used in Free-fall models, where acceleration is constant.

Lyrx [107]3 years ago
7 0
100N describes the weight of the sandbag, while 100kg is the mass of the sandbag.

To calculate acceleration, divide your weight by the mass, thus the accleration is:

100N/100kg = 1(m/s^2)
You might be interested in
Which is the BEST example of the kind of mechanics that are studied in sports biometrics?
ikadub [295]

Answer:

-A.

Explanation:

: Hope it's Help:

[correct me if I'm not correct]

5 0
2 years ago
An object of mass 6 kg. is resting on a horizontal surface. A horizontal force
son4ous [18]

Answer:

a) The work done by the applied force is 1500 joules.

b) The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) 300 joules of energy are lost during motion.

Explanation:

a) Since the object has a constant mass, on which a constant horizontal force is exerted. The work done by the force (W), measured in joules, is defined by the following expression:

W = F\cdot \Delta x (1)

Where:

F - Force, measured in newtons.

\Delta x - Distance, measured in meters.

If we know that F = 15\,N and \Delta x = 100\,m, then the work done by the force exerted on the object is:

W = (15\,N)\cdot (100\,m)

W = 1500\,J

The work done by the applied force is 1500 joules.

b) At first we need to calculate the net acceleration of the object (a), measured in meters per square second. By assuming a constant acceleration, we use the following kinematic formula:

\Delta x = v_{o}\cdot t +\frac{1}{2}\cdot a\cdot t^{2} (2)

Where v_{o} is the initial velocity of the object, measured in meters per second.

We clear the acceleration within the equation above:

\frac{1}{2}\cdot a \cdot t^{2} =  \Delta x-v_{o}\cdot t

a = \frac{2\cdot (\Delta x - v_{o}\cdot t)}{t^{2}}

If we know that \Delta x = 100\,m, v_{o} = 0\,\frac{m}{s} and t = 10\,s, then the net acceleration experimented by the object is:

a = \frac{2\cdot \left[100\,m-\left(0\,\frac{m}{s} \right)\cdot (10\,s)\right]}{(10\,s)^{2}}

a = 2\,\frac{m}{s^{2}}

By the 2nd Newton's Law, we construct the following equation of equilibrium under the consideration of a friction force acting against the motion of the object:

\Sigma F = F - f = m\cdot a (3)

Where:

F - External force exerted on the object, measured in newtons.

f - Kinetic friction force, measured in newtons.

If we know that F = 15\,N, m = 6\,kg and a = 2\,\frac{m}{s^{2}}, the kinetic friction force is:

f = F-m\cdot a

f = 15\,N-(6\,kg)\cdot \left(2\,\frac{m}{s^{2}} \right)

f = 3\,N

The work done by friction (W'), measured in joules, is:

W' = f\cdot \Delta x (4)

W' = (3\,N) \cdot (100\,m)

W' = 300\,J

And the net work experimented by the object is:

\Delta W = 1500\,J - 300\,J

\Delta W = 1200\,J

By the Work-Energy Theorem we understand that change in translational kinetic energy (\Delta K), measured in joules, is equal to the change in net work. That is:

\Delta K = \Delta W (5)

If we know that \Delta W = 1200\,J, then the change in translational kinetic energy is:

\Delta K = 1200\,J

The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) The energy lost by the object is equal to the work done by the force of friction. Therefore, 300 joules of energy are lost during motion.

7 0
3 years ago
List the planet name and position from the Sun for each one (1, 2, 3)
IgorLugansk [536]

Answer:

The planets in order from the sun are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and finally the dwarf planet Pluto. Most people have at least heard about our solar system and the planets in it.

Explanation:

<h3><u><em>please mark me brainliest</em></u></h3>
8 0
2 years ago
Describe how the kidney and bladder work together to remove waste from the body. (2 points)
san4es73 [151]

Answer:

The kidneys make urine by filtering wastes and extra water from blood. Urine travels from the kidneys through two thin tubes called ureters and fills the bladder. When the bladder is full, a person urinates through the urethra to eliminate the waste.

Explanation:

Good luckkk

8 0
3 years ago
Read 2 more answers
In terms of matter and resources, Earth is essentially a(n) ________ system ; in terms of energy, Earth is a(n) ________ system.
Savatey [412]

Answer:

b

Explanation:

6 0
3 years ago
Other questions:
  • A strong lightning bolt transfers an electric charge of about 16 C to Earth (or vice versa). How many electrons are transferred?
    6·1 answer
  • A skateboarder rolls off a ledge that is 1.12 m high, and lands 1.48 m from the base of the edge. How much time was he in the ai
    12·1 answer
  • The rocky planets are made of material that is much (mire/less) dense than the outer planets.​
    7·1 answer
  • A migrating bird flew across a lake at an average speed of 18 meters per second. Was the distance that the bird flew across the
    7·1 answer
  • Using average rates of money growth and inflation in the United States over many decades, Friedman and Schwartz found that decad
    13·1 answer
  • If an object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If
    8·1 answer
  • Consider the following hypothetical subject performing the EMG laboratory: Immediately after the subject's maximum grip strength
    10·1 answer
  • If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ra
    5·1 answer
  • A hot iron horseshoe (mass = 0.35 kg ), just forged, is dropped into 1.40 L of water in a 0.45 kg iron pot initially at 22.0°C.
    8·1 answer
  • Steve and José drove José's car to the beach during spring break. The 495 kilometer drive took them 8 hours and 30 minutes. What
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!