Answer:
Series circuit:
The voltage that is measured across the circuit is different.
The current measured in a series circuit remains the same at all points in the circuit.
Parallel circuit:
The current measured across each resistor varies
The voltage measured across a parallel circuit will remain the same
Explanation:
Series and parallel circuits behave differently when it comes to the circulation of current and the interaction with a potential difference.
In a series circuit, the resistances are connected end to end. As a result, the voltage that is measured across the circuit is different once resistance is encountered. However, the current measured in a series circuit remains the same at all points in the circuit.
A parallel circuit behaves in an exactly opposite manner to the series circuit. In a parallel circuit, the resistances are connected side by side. As a result of this, the current measured across each resistor varies as there are circuit branches through which electric current can flow into. On the other hand, the voltage measured across a parallel circuit will remain the same
By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>:</em><em>)</em>
Answer:

Explanation:
Given:
- spring constant of the spring attached to the input piston,

- mass subjected to the output plunger,

<u>Now, the force due to the mass:</u>



<u>Compression in Spring:</u>



or

Answer:
a) Acceleration is zero
, c) Speed is cero
Explanation:
a) the equation that governs the simple harmonic motion is
x = A cos (wt +φφ)
Where A is the amplitude of the movement, w is the angular velocity and φ the initial phase determined by the initial condition
Body acceleration is
a = d²x / dt²
Let's look for the derivatives
dx / dt = - A w sin (wt + φ)
a = d²x / dt² = - A w² cos (wt + φ)
In the instant when it is not stretched x = 0
As the spring is released at maximum elongation, φ = 0
0 = A cos wt
Cos wt = 0 wt = π / 2
Acceleration is valid for this angle
a = -A w² cos π/2 = 0
Acceleration is zero
b)
c) When the spring is compressed x = A
Speed is
v = dx / dt
v = - A w sin wt
We look for time
A = A cos wt
cos wt = 1 wt = 0, π
For this time the speedy vouchers
v = -A w sin 0 = 0
Speed is cero