Possibly the third one down. I don't think that DNA was around in Crippen's time. I'm not a criminologist or associated fun and games, though.
Answer:
2991.42 N
Explanation:
For this problem, we'll use the equations: momentum= mass x velocity and impulse = change in momentum, and impulse=force x time.
initial momentum; p1 = 0.17 x 41 = 6.97 kg.m/s
final momentum; p2 = 0, because final velocity is 0 m/s
Thus,
impulse = p1 - p2= 6.97 - 0 = 6.97 kg.m/s
Finally, impulse= Force x time,
Thus, Force = Impulse/time
Force= 6.97/ (2.33 x 10^(-3)) = 2991.42 N
Answer:
gravity
Explanation:
We use gravity to do different force.
The formula to get the velocity is V=D/T. First you need to determine the distance and time at a certain point and plug it into the equation and that will be your velocity at that point. To get it between two points you complete the directions two times and find the average or use the slope formula, slope = rise/run; slope = (y2 - y1) / (x2 - x1).
Answer: The force needed is 140.22 Newtons.
Explanation:
The key assumption in this problem is that the acceleration is constant along the path of the barrel bringing the pellet from velocity 0 to 155 m/s. This means the velocity is linearly increasing in time.
The force exerted on the pellet is
F = m a
In order to calculate the acceleration, given the displacement d,

we will need to determine the time t it took for the pellet to make the distance through the barrel of 0.6m. That time can be determined using the average velocity of the pellet while traveling through the barrel. Since the velocity is a linear function of time, as mentioned above, the average is easy to calculate as:

This value can be used to determine the time for the pellet through the barrel:

Finally, we can use the above to calculate the force:
