1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
3 years ago
14

Jesse watches the Moon rise around 6:00 PM. When will the Moon most likely set?

Physics
2 answers:
fiasKO [112]3 years ago
7 0

around 6:00 AM the following morning

Dominik [7]3 years ago
5 0
On the average throughout a month, the moon appears to move
through the sky with a period of about 24 hours 48 minutes.

So if Jesse sees the Moon rise around 6:00 PM, he will see it
set the next morning if he is awake around 6:24 AM, and rise
again the next evening around 6:48 PM.
You might be interested in
Automobiles must be able to sustain a frontal impacl The automobile design must allow low speed impacts with little sustained da
valentinak56 [21]

Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

Explanation:

Given that;

mass of vehicle m = 1000 kg

for a low speed test; V = 2.5 m/s

bumper maximum deflection = 4 cm = 0.04 m

First we determine the energy of the vehicle just prior to impact;

W_v = 1/2mv²

we substitute

W_v = 1/2 × 1000 × (2.5)²

W_v = 3125 J

now, the the effective design stiffness k will be:

at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;

hence;

W_v = 1/2kx²

we substitute

3125 = 1/2 × k (0.04)²

3125 = 0.0008k

k = 3125 / 0.0008

k = 3906250 N/m

Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

3 0
2 years ago
describes how the color and texture of a surface affect absorption and reflection of solar radiation?
Wewaii [24]

Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.

3 0
3 years ago
Two vehicles A and B accelerate uniformly from rest.
spayn [35]

Answer:

(i) Please find attached the required velocity time graphs plotted with MS Excel

(ii) The velocity of vehicle A at the 18th second = 20 m/s

The velocity of vehicle B at the 18th second = 0 m/s

(iii) The distance between the two vehicles at the moment in (ii) above is 60 meters

Explanation:

The given parameters of the motion of vehicles A and B are;

The acceleration of vehicles A and B = Uniform acceleration starting from rest

The maximum velocity attained by vehicle A = 30 m/s

The time it takes vehicle A to attain maximum velocity = 10 s

The maximum velocity attained by vehicle B = 30 m/s

The time it takes vehicle B to attain maximum velocity = The time it takes vehicle A to attain maximum velocity = 10 s

The time duration vehicle A maintains its maximum velocity = 6 s

The time duration vehicle B maintains its maximum velocity = 4 s

(i) From the question, we get the following table;

\begin{array}{ccc}Time &V_A&V_B\\0&0&0\\10&30&40\\14&30&40\\16&30&20\\18&20&0\\22&0&\end{array}

From the above table the velocity time graphs of vehicles A and B is created with MS Excel and can included here

(ii) The velocity of vehicle A at the start = 0 m/s

After accelerating for 10 seconds, the velocity of vehicle A = The maximum velocity of vehicle A = 30 m/s

The maximum velocity is maintained for 6 seconds which gives;

At 10 s + 6 s = 16 s, the velocity of vehicle A = 30 m/s

The time it takes vehicle A to decelerate to rest = 6 s

The deceleration of vehicle A, a_A = (30 m/s - 0 m/s)/(6 s) = 5 m/s²

Therefore, we get;

v = u - a_A·t

At the 18th second, the deceleration time, t = 18 s - 16 s = 2 s

u = 30 m/s

∴ v₁₈ = 30 - 5 × 2 = 20

The velocity of vehicle A at the 18th second, V_{18A} = 20 m/s

For vehicle B, we have;

At the 14th second, the velocity of vehicle B = 40 m/s

Vehicle B decelerates to rest in, t = 4 s

The deceleration of vehicle B, a_B = (40 m/s - 0 m/s)/(4 s) = 10 m/s²

For vehicle B, at the 18th second, t = 18 s - 14 s = 4 s

∴ v_{18B} = 40 m/s - 10 m/s² × 4 s = 0 m/s

The velocity of the vehicle B at 18th second, v_{18B} = 0 m/s

(iii) The distance covered by vehicle A up to the 18th second is given by the area under the velocity-time graph as follows;

The area triangle A₁ = (1/2) × 10 × 30 = 150

Area of rectangle, A₂ = 6 × 30 = 180

Area of trapezoid, A₃ = (1/2) × (30 + 20) × 2 = 50

The distance covered in the 18th second by vehicle S_A = A₁ + A₂ + A₃

∴ S_A = 150 + 180 + 50 = 380

The distance covered in the 18th second by vehicle S_A = 380 m

The distance covered by the vehicle B in the 18th second is given by the area under the velocity time graph of vehicle B as follows;

Area of trapezoid, A₅ = (1/2) × (18 + 4) × 40 = 440

The distance covered by the trapezoid, S_B = 440 m

The distance of the two vehicles apart at the 18t second, S_{AB} = S_B - S_A

∴ S_{AB} = 440 m - 380 m = 60 m

The distance of the two vehicles from one another at the 18th second, S_{AB} = 60 m.

5 0
3 years ago
3 cases where kinetic energy become potential energy
finlep [7]
--  Toss a rock straight up.  The kinetic energy you give it
with your hand becomes potential energy as it rises. 
Eventually, when its kinetic energy is completely changed
to potential energy, it stops rising.

--  When you're riding your bike and going really fast, you come
to the bottom of a hill.  You stop pedaling, and coast up the hill.
As your kinetic energy changes to potential energy, you coast
slower and slower.  Eventually, your energy is all potential, and
you stop coasting.

--  A little kid on a swing at the park.  The swing is going really fast
at the bottom of the arc, and then it starts rising.  As it rises, the
kinetic energy changes into potential energy, more and more as it
swings higher and higher.  Eventually it reaches a point where its
energy is all potential; then it stops rising, and begins falling again.
8 0
3 years ago
Read 2 more answers
A piece of plastic is uniformly charged with surface charge density eta1. The plastic is then broken into a large piece with sur
Amiraneli [1.4K]
C is the answer for this problem
3 0
2 years ago
Other questions:
  • In an electrochemical cell, the anode is ____.
    14·1 answer
  • Give an example of a compound machine. Explain how at least two simple machines are part of this complex machine.
    12·1 answer
  • your friend is bragging about his motorcycle. he claims that it can go from a stop in position to 50 mph in three seconds. He is
    15·1 answer
  • Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point. F⃗ 1F→1F_1_vec has a magnitude of 9.20 NN and is directed at an a
    15·1 answer
  • A plane travels 1743 KM in 2 hours 30 minutes. How fast was the plane traveling?
    7·1 answer
  • 1.
    9·1 answer
  • Which statement describes a resistor in a circuit?
    15·2 answers
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
  • The total resistance of a parallel circuit is 25 ohms. If the total current is 100mA, how much current is through a 220 ohm resi
    6·1 answer
  • PLEASE HELP! I'LL GIVE BRAINLEST​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!