1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
14

A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2

. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track.
Required:
Determine the coefficient of static friction between the car and the track.
Physics
1 answer:
Ahat [919]3 years ago
7 0

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

You might be interested in
Two insulated wires, each 2.64 m long, are taped together to form a two-wire unit that is 2.64 m long. One wire carries a curren
nikklg [1K]

Answer:

4.77\ \text{A}

Explanation:

F = Magnetic force = 4.11 N

I_n = Net current

I_2 = Current in one of the wires = 7.68 A

B = Magnetic field = 0.59 T

\theta = Angle between current and magnetic field = 65^{\circ}

l = Length of wires = 2.64 m

I = Current in the other wire

Magnetic force is given by

F=I_nlB\sin\theta\\\Rightarrow I_n=\dfrac{F}{lB\sin\theta}\\\Rightarrow I_n=\dfrac{4.11}{2.64\times 0.59 \sin65^{\circ}}\\\Rightarrow I_n=2.91\ \text{A}

Net current is given by

I_n=I_2-I\\\Rightarrow I=I_2-I_n\\\Rightarrow I=7.68-2.91\\\Rightarrow I=4.77\ \text{A}

The current I is 4.77\ \text{A}.

8 0
3 years ago
Jonathan has six strings that are the same thickness and are all the same material. He cuts the strings to different lengths and
harkovskaia [24]
The shortest string will have the highest pitch.

7 0
3 years ago
Read 2 more answers
A complete circuit is often referred to as a(n) _______ circuit
aivan3 [116]

Answer:

Complete Circuit

Explanation:

A circuit is defined as a completed path for voltage to flow from a source of voltage through a load and back to the source. A complete circuit or path is often referred to as a(n) ? circuit. Before current can flow in a circuit, the circuit must be closed. 100% right

4 0
3 years ago
The electric eye that prevents an elevator door from closing when you are in the doorway relies upon which physics principle?
goblinko [34]
It's Photoelectric Effect, I just a test with this same question. I am not good for explaining exactly how, but I was right.
3 0
3 years ago
Read 2 more answers
When determining the number of significant digits in a measurement,
Black_prince [1.1K]
B) All nonzero digits are significant.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Two children are pulling and pushing a 30.0 kg sled. The child pulling the sled is exerting a force of 12.0 N at a 45o angle. Th
    10·2 answers
  • Which is the best predictor of the radioactive nature of an isotope?
    12·2 answers
  • Katie rolls a toy car off the end of a table. Which path will the car follow when it leaves the table? A. B. C. D.
    12·2 answers
  • Why must you balance an equation to describe correctly what happens in a chemical reaction
    7·1 answer
  • What is the angular diameter (in arcseconds) of an object that has a linear diameter of 75 cm and a distance of 2 km?
    13·1 answer
  • a coin is dropped from the top of a tall building. determine the coin's (a) velocity and (b) displacement after 1.5 sec.
    12·1 answer
  • Write and solve a MA or efficiency problem
    13·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • Which of these objects has memetic energy
    12·1 answer
  • The distance traveled by the scooter driver from 9:00 to 11:00 am is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!