1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
14

A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2

. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track.
Required:
Determine the coefficient of static friction between the car and the track.
Physics
1 answer:
Ahat [919]3 years ago
7 0

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

You might be interested in
True or false? Thanks,
vichka [17]

Answer: The answer is true

7 0
1 year ago
Read 2 more answers
How must a fuse be connected in a circuit to prevent current from flowing when the circuit becomes ""overloaded""?
Lady bird [3.3K]

Answer:

The fuse must be connected between the device and the power intake source.

Explanation:

A fuse is a protective component of electrical appliances that is designed to be sensitive to a particular range of electric current

The fuse is made of a thing metal strip with a known melting point. Once current abive its carrying capacity flows through it, large heat is generated in the metal strip which melts it and causes the metal strip to cut int two protecting the device from the power spike.

3 0
2 years ago
An extreme skier, starting from rest, coasts down a mountain slope that makes an angle of 25.0 with the horizontal. The coeffici
uranmaximum [27]

Answer:

V = 10.88 m/s

Explanation:

V_i =initial velocity = 0m/s

a= acceleration= gsinθ-\mu_kcosθ

putting values we get

a= 9.8sin25-0.2cos25= 2.4 m/s^2

v_f= final velocity and d= displacement along the inclined plane = 10.4 m

using the equation

v^2_f=v^2_i-2as

v^2_f=0^2-2(2.4)(10.4)

v_f= 7.04 m/s

let the speed just before she lands be "V"

using conservation of energy

KE + PE at the edge of cliff = KE at bottom of cliff

(0.5) m V_f^2 + mgh = (0.5) m V^2

V^2 = V_f^2 + 2gh

V^2 = 7.04^2 + 2 x 9.8 x 3.5

V = 10.88 m/s

6 0
3 years ago
What is the formula for calcium chloride
Naddik [55]

The correct answer is - CaCl2

The calcium chloride is a salt, an inorganic compound. Its formula is CaCl2, with Ca being calcium, Cl being chloride, and the number 2 representing the number of chloride molecules.

The calcium chloride is a white colored crystalline solid when it is at room temperature, and it is highly soluble in water, acetone, and acetic acid. It has a molar mass of 110.98 g/mol, density of 2.15 g/cm³, and melting point at 772 °C.

6 0
3 years ago
Read 2 more answers
Which term describes the time it takes for half of a radioactive elements atoms to decay?
devlian [24]
I think that is half-life
6 0
3 years ago
Other questions:
  • The energy a glass has as you are holding it still above a table is
    6·2 answers
  • Two wheels initially at rest roll the same distance without slipping down identical planes. Wheel B has twice the radius, but th
    8·1 answer
  • Which of these would best define sound intensity? A) how fast the wave is traveling B) the frequency of the sound wave the power
    14·2 answers
  • A car sitting at a red light begins to accelerate at 2.0 m/s2 when the light turns green. It continues with this acceleration un
    12·1 answer
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    8·1 answer
  • Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.55 μC charge and flies due west at a speed of
    11·1 answer
  • Suppose a shrimp has been put on the ground that has just been taken out of water.Now touch the shrimp from a distance by a stic
    8·2 answers
  • A rock is dropped from a sea cliff, and the sound of it striking the ocean is heard 2.9 s later. If the speed of sound is 340 m/
    9·1 answer
  • G.P.E = weight (n) x height (m). 2 identical twins are skiing down 2 different slopes. one is 1000m high, the other is 1500 m hi
    5·2 answers
  • A student runs up a flight of stairs which info is not needed to calculate the rate of the student is doing work against gravity
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!