1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
14

A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2

. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track.
Required:
Determine the coefficient of static friction between the car and the track.
Physics
1 answer:
Ahat [919]3 years ago
7 0

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

You might be interested in
the electrostatic force between two objects is 40N. if the charge of one object is cut in half, and the distance is doubled, wha
n200080 [17]

Answer:

F1 = K Q1 Q2 / R1^2

F2 = K Q1 / 2 * Q2 / (2 R1)^2

F2 / F1 = 1/2 / 4 = 1/8

The new force is 5N   (1/2 due to charge and 1/4 due to distance)

8 0
2 years ago
Do you get this ?????
Jet001 [13]

The first one is actually 10 times as big as the second one.

Because of their places, the first one means 6000, and the second one means 600.

8 0
3 years ago
The value of acceleration due to gravity is less at the top of Mount Everest then that in the terai reason, why?​
xxTIMURxx [149]

Answer:

The value of acceleration due to gravity is greater in terai than in mountain. In terai region the radius of earth is less as it lies close to the centre of the earth. Thus, the value of g is more in terai region.

3 0
2 years ago
Landslides and mudslides can result from both volcanoes and earthquakes.<br><br> true<br> false
EleoNora [17]
The correct answer would be True!
4 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • An engine performs 6400 j of work on a motorbike the motorbike and the rider have a combined mass of 200 kg if the bike started
    11·1 answer
  • Which of the following is not a type of plate boundary
    14·2 answers
  • Name the two components that make orbital motion, and explain why objects stay in orbit.
    10·1 answer
  • what is newton's second law of motion? forces are balanced when they are equal and opposite. an object at rest or in motion will
    9·2 answers
  • The force that keeps two surfaces at rest from sliding over each other is
    5·1 answer
  • A dockworker loading crates on a ship finds that a 25-kg crate, initially at rest on a horizontal surface, requires a 72-N horiz
    15·1 answer
  • A 0.20 mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to
    9·1 answer
  • If your water heat has an efficiency of 95 percent, how much energy would it take to heat 45kg of water from 23 C to 60 C. (The
    8·1 answer
  • What average net force is required to stop a 4.5 kg bowling ball,initially at rest, accelerated for 6 seconds over a distance of
    12·1 answer
  • A type of wave that carries energy from one place to another, even through
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!