Answer:
option B
Explanation:
given,
diameter of the rotating space = 2 Km
Force exerted at the edge of the space = 1 g
force experienced at the half way = ?
As the object is rotating in the circular part
Force is equal to centripetal acceleration.
at the edge
g = ω² r
ω is the angular velocity of the particle
r is the radius.
now, acceleration at the half way
g' = ω² r'



People at the halfway experience g/2
hence, the correct answer is option B
Answer: Go to the harbor. When a ship sails off toward the horizon, it doesn't just get smaller and smaller until it's not visible anymore. Instead, the hull seems to sink below the horizon first, then the mast. When ships return from sea, the sequence is reversed: First the mast, then the hull, seem to rise over the horizon.
Climbing to a high point will allow you to be able to see farther if you go higher. If the Earth was flat, you'd be able to see the same distance no matter your elevation
Answer:
this description is valid for mediadle displacement, bone is an acceptable description
Explanation:
The description of a person's position must be done with a position vector. These vectors must have magnitude, a given direction and a starting point.
In the description this has a starting point corner NO of pine and 675.
Each displacement occurs with respect to the previous one, indicating the magnitude of the displacement and its direction.
After analyzing this description is valid for mediadle displacement, bone is an acceptable description
C: if it senses unequal currents
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.