1.) Na
2.) Cl ( at the second blank)
sodium metal+hydrochloric acid
Answer:
5.46 8 x 10²³ molecules.
Explanation:
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole → 6.022 x 10²³ molecules.
9.08 x 10⁻¹ mole → ??? molecules.
∴ The no. of molecules of CO₂ are in 9.08 x 10⁻¹ mol = (6.022 x 10²³ molecules) ( 9.08 x 10⁻¹ mole) / (1.0 mol) = 5.46 8 x 10²³ molecules.
Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose
is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:





However; the workdone = -PdV

W = - 7.6 J
The heat energy Q = Δ h


Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ
Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M