Answer:
a. 0.171M
b. 0.0938M
c. 0.284
d. 1.99atm
e. 1.88
Explanation:
Hello,
In this case, for the given reaction whose balance should be corrected as:

For which the law of mass action, in terms of the change
due to stoichiometry and the reaction extent, turns out:
![K=\frac{[H_2]_{eq}^2[S_2]_{eq}}{[H_2S]_{eq}^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BH_2%5D_%7Beq%7D%5E2%5BS_2%5D_%7Beq%7D%7D%7B%5BH_2S%5D_%7Beq%7D%5E2%7D)
Thus, the initial concentration of hydrogen sulfide is:
![[H_2S]_0=\frac{6.75g/(34g/mol)}{0.75L} =0.265M](https://tex.z-dn.net/?f=%5BH_2S%5D_0%3D%5Cfrac%7B6.75g%2F%2834g%2Fmol%29%7D%7B0.75L%7D%20%3D0.265M)
Now, since the equilibrium amount of sulfur is given, the change
due to equilibrium reaching is:
![[S_2]_{eq}=x=\frac{6.42x10^{-2}mol}{0.75L}=0.0856M](https://tex.z-dn.net/?f=%5BS_2%5D_%7Beq%7D%3Dx%3D%5Cfrac%7B6.42x10%5E%7B-2%7Dmol%7D%7B0.75L%7D%3D0.0856M)
Therefore:
a. Equilibrium concentration of hydrogen:
![[H_2]_{eq}=2x=2*0.0856M=0.171M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D2x%3D2%2A0.0856M%3D0.171M)
b. Equilibrium concentration of hydrogen sulfide:
![[H_2S]_{eq}=0.265M-2x=0.265M-2*0.0856M=0.0938M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.265M-2x%3D0.265M-2%2A0.0856M%3D0.0938M)
c.) Equilibrium constant, Kc:

d.) Partial pressure of sulfur gas:
![p_{S_2}=[S_2]RT= 0.0856\frac{mol}{L}*0.082\frac{atm*L}{mol*K}*283K=1.99atm](https://tex.z-dn.net/?f=p_%7BS_2%7D%3D%5BS_2%5DRT%3D%200.0856%5Cfrac%7Bmol%7D%7BL%7D%2A0.082%5Cfrac%7Batm%2AL%7D%7Bmol%2AK%7D%2A283K%3D1.99atm)
e. Kc, for the reaction:

In that case, it equals the inverse halved initial reaction, whose modification is related as:

Best regards.