Answer:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Explanation:
Chemical equation:
HNO₃ + Al(OH)₃ → Al(NO₃)₃ + H₂O
Balanced chemical equation:
3HNO₃ + Al(OH)₃ → Al(NO₃)₃ + 3H₂O
Ionic equation:
3H⁺ + 3NO⁻₃(aq) + Al(OH)₃(s) → Al³⁺(aq) + 3NO₃⁻¹(aq) + 3H₂O(l)
Net ionic equation:
Al(OH)₃(s) + 3H⁺(aq) → Al³⁺(aq) + 3H₂O(l)
The NO⁻₃ are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
Answer:
What about hot air balloons? They work by similar principles. If you heat up a gas it expands. In the case of a hot air balloon, when the gas inside the balloon expands the extra gas is pushed out the bottom of the balloon, meaning that there are fewer atoms inside the balloon, meaning that the air in the balloon is lighter than the air outside the balloon.
The amount of lifting power is controlled by how hot the air is. If you heat the air inside the balloon 100 degrees F hotter than the outside air temperature, then the air inside the balloon will be about 25 percent lighter than the air outside the balloon. So a cubic foot of air weighs about 35 grams at 32 degrees F. A cubic foot of hot air at 132 degrees F will weigh 25 percent less, or about 26.5 grams. The difference is 8.5 grams or so. So a hot air balloon has to be much bigger to support the same weight, but it will float because hotter air is lighter than cooler air.
Explanation:
The amount of lifting power
Mass, if you know what element you are working with.