Pressure has no effect on the solubility of KNO3 in water. This is because it is solid in liquid type of solution. In solid in liquid type of solution, solid is solute (minor component), liquid is solvent (major component). For solid in liquid type of solutions, solubility is independent of pressure.
On other hand, pressure has a pronounced effect on the solubility of gas in liquid type solutions. In such system, gas is solute (minor component) and liquid is solvent (major component). Example of such solution is aerated water. Herein, CO2 is dissolved in water. In such gas in liquid type of solutions, solubility increases with increasing pressure.
Taking into account the definition of avogadro's number, 3.37×10⁻⁷ moles of methane are 20.32×10¹⁶ molecules.
First of all, you have to know that Avogadro's number indicates the number of particles of a substance (usually atoms or molecules) that are in a mole.
Its value is 6.023×10²³ particles per mole and it applies to any substance.
Then you can apply the following rule of three: if 6.023×10²³ molecules are contained in 1 mole of methane, then 20.32×10¹⁶ molecules are contained in how many moles of methane?
amount of moles of methane= (20.32×10¹⁶ molecules × 1 mole)÷ 6.023×10²³ atoms
Solving:
<u><em>amount of moles of methane= 3.37×10⁻⁷ moles</em></u>
Finally, 3.37×10⁻⁷ moles of methane are 20.32×10¹⁶ molecules.
Learn more about Avogadro's Number:
Answer:
D. C₄H₁₀ and C₂H₅
<h2>
What is a empirical formula?</h2>
A chemical formula indicating the elements of a compound and their relative proportions, as (CH₂O)n.
Since an empirical formula indicates the ratio (proportions) of the elements in the compound, it can be used, along with the molar weight of the compound, to determine the molecular formula.
The empirical formula provides the smallest whole-number ratio among elements or compounds within a molecular compound. A compound is a chemical formed from atoms of different chemical elements.
Hence, Option D is correct.
#SPJ2