Answer:
70.0°C
Explanation:
We are given;
- Amount of heat generated by propane as 104.6 kJ or 104600 Joules
- Mass of water is 500 g
- Initial temperature as 20.0 ° C
We are required to determine the final temperature of water;
Taking the initial temperature is x°C
We know that the specific heat of water is 4.18 J/g°C
Quantity of heat = Mass × specific heat × change in temperature
In this case;
Change in temp =(x-20)° C
Therefore;
104600 J = 500 g × 4.18 J/g°C × (x-20)
104600 J = 2090x -41800
146400 = 2090 x
x = 70.0479
=70.0 °C
Thus, the final temperature of water is 70.0°C
Answer:
57.48%
Explanation:
Calculate the mass of 1 mole of malachite:
MM Cu = 63.55
MM O = 16.00
MM H = 1.01
MM C = 12.01

A mole of malachite has:
2 moles of Cu
5 moles of O
2 moles of H
1 mole of C
MW Malachite = 2*MM(CU) + 5*MM(O) + 2*MM(H) + 1 *MM(C)
MW Malachite = 2*63.55 + 5*16.00 + 2*1.01 + 1*12.01
MW Malachite = 221.13
Mass of Cu in a mole of Malachite = 2*MM(CU) = 127.1
Now divide the mass of Cu by the mass of Malachite

To separate off different products in order of their boiling points. You do it by a process of heating and cooling in a horizontal condenser usually.
The nonpolar end of a soap molecule attaches itself to grease.
Answer:
0.718L of 0.81M HCl are required
Explanation:
Based on the reaction:
Cd(s)+2HCI(aq) → H2(g)+CdCl2(aq)
<em>1 mol of Cd reacts with 2 moles of HCl</em>
<em />
To solve this question we must, as first, find the moles of Cd. With the moles of Cd we can find the moles of HCl needed to react completely with the Cd. With the moles and the molarity we can find the volume:
<em>Moles Cd -Molar mass: 112.411g/mol-:</em>
32.71g * (1mol / 112.411g) = 0.2910 moles Cd
<em>Moles HCl:</em>
0.2910 moles Cd * (2 moles HCl / 1mol Cd) =
0.5820 moles HCl
<em>Volume:</em>
0.5820 moles HCl * (1L / 0.81moles) =
<h3>0.718L of 0.81M HCl are required</h3>