1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kow [346]
3 years ago
13

What is the temperature when a solid begins to liquefy

Physics
1 answer:
MrRa [10]3 years ago
6 0

Answer:

Explanation:

The temperature is at its Melting Point - <em>t</em><u><em>emperature at which a solid begins to liquefy. </em></u>

<u><em /></u>

<u><em>Got The Answer From Google</em></u>

You might be interested in
Tony drove to the mountains last weekend. There was heavy traffic on the way there, and the trip took hours. When Tony drove hom
polet [3.4K]

Answer:

Question not completed, so I analysed the question first

Tony drove to the mountains last weekend. there was heavy traffic on the way there, and the trip took 6 hours. when tony drove home, there was no traffic and the trip only took 4 hours. if his average rate was 22 miles per hour faster on the trip home, how far away does tony live from the mountains?

Explanation:

Let use variables to solve the problems

Let the first trip to be mountain take x hours

Let the trip back home take y hours

Let the speed to while going to the mountain be a miles/hour

Then, while going home it was b miles/hour faster than while going to the mountain.

Then, speed going home is (a+b)miles / hour

The formula for speed is given as

Speed=distance/time

The constant through out the journey is distance, the two journey has the same distance.

Then,

Distance =speed×time

For first journey going to the mountain

Distance = a×x=ax miles

For the second journey going home

Distance =y×(a+b)

Distance Mountain= distance home

ax=y(a+b)

Make a subject of the formula

ax=ya+yb

ax-ya=yb

a(x-y)=yb

a=yb/(x-y)

Therefore, distance from mountain is

Distance=speed ×time

Distance= a×x=ax

Now, applying the questions

So from the questions

x=6hours, y=4hours

Also, b=22miles/hour

Then,

a=yb/(x-y)

a=4×22/(6-4)

a=88/2

a=44miles/hour

Then, the house distance from the mountain is

Distance=ax

Distance =44×6

Distance =264miles

4 0
3 years ago
Read 2 more answers
Rachel and Sarah are on a bus travelling at 5 mph past John who is standing on the sidewalk. Rachel then throws a ball
oksian1 [2.3K]

Answer:

I think C

Explanation:

Since the bus is moving away from John.

{C - V}.

5 0
2 years ago
The activation of clotting factors will be blocked.
dedylja [7]

With the blocking of activation of clotting factors, the rate of conversion of fibrinogen to fibrin will decrease to a huge extent and this will prevent the clot formation.

Option A

<h3><u>Explanation:</u></h3>

The process of stopping of flow of blood through any wound by formation of a clot is known as blood clotting. The clot in blood is formed by conversion of the fibrinogen protein into its polymer form fibrin which forms a meshwork.

The conversion of fibrinogen to fibrin requires a lot of enzymes and factors present which is required one by one, known as the Cascade theory. Total of 13 factors are required, where there are prothrombin, thromboplastin, and different other factors. Inactivation of any of the 13 factors will lead to less conversion of fibrinogen to fibrin, thereby the rate of conversion will highly decrease.

7 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
F = M x G<br><br> Find the force of gravity acting upon a 1500Kg Hippopatamus.
expeople1 [14]

Answer:........... .. .....

6 0
3 years ago
Other questions:
  • How many mL of water would be displaced by 408 g of lead
    13·1 answer
  • While skateboarding at 19 km/h, Alana throws a tennis ball at 11 km/h to her friend Oliver. If Alana is the reference frame, the
    11·2 answers
  • Which part of the atom is not found in the nucleus
    8·1 answer
  • Plz help plz give u brainlist<br>state principal of pin hole camera??<br>​
    13·1 answer
  • Bonnie and Clyde are sliding a 323 kg bank safe across the floor to their getaway car. The safe slides with a constant speed if
    5·1 answer
  • If the Moon revolves around the Earth in a circular orbit with a period of 27 days, 7 hours, and 43 minutes, and astronomers hav
    11·1 answer
  • What is the layers of the earth and which one is made up of liquid?
    9·1 answer
  • How is Diamond different from cubic Zirconia?
    14·1 answer
  • Bromine vapour is heavier than air. even so it's spreads upwards in the experiment above. Why?
    15·1 answer
  • Gus likes to create pictures or clusters to show the information he has learned. What kind of learner is Gus likely to be?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!