Answer:
<h2>volume= 0.85m^3</h2>
Explanation:
<em>The density of a substance is defined as the mass per unit volume of the substance, the unit is in kg/m^3 and it is represented by the greek letter rho</em>
Step one:
given data
we are told that the density of Co2= 1.98 kg/m3
and the mass of Co2 is= 1.70 kg
we know the relation between mass, volume and density is

make volume subject of formula we have

substitute we have

Answer: find the answer in the explanation as kinetic energy converts to potential energy.
Explanation:
Before the truck driver sees a dog running into the road, The mechanical energy state of the truck will be kinetic energy at maximum.
Immediately he applied the brakes, the mechanical energy of the truck will be combination of kinetic energy and potential energy.
The kinetic energy will gradually decrease as potential energy continue to increase till it reaches maximum potential energy.
The truck will come to a stop at maximum potential energy
Answer:
Explanation:
The magnitude of the electric force on this charged particle A depends upon the following
5. the distance between the point charge Q and the charged particle A
8. the amount of the charge on the point charge Q
9. the magnitude of charge on the charged particle A
Answer:
The kinetic energy of the merry-goround after 3.62 s is 544J
Explanation:
Given :
Weight w = 745 N
Radius r = 1.45 m
Force = 56.3 N
To Find:
The kinetic energy of the merry-go round after 3.62 = ?
Solution:
Step 1: Finding the Mass of merry-go-round


m = 76.02 kg
Step 2: Finding the Moment of Inertia of solid cylinder
Moment of Inertia of solid cylinder I =
Substituting the values
Moment of Inertia of solid cylinder I
=>
=> 
=> 
Step 3: Finding the Torque applied T
Torque applied T =
Substituting the values
T = 
T = 81.635 N.m
Step 4: Finding the Angular acceleration
Angular acceleration ,
Substituting the values,


Step 4: Finding the Final angular velocity
Final angular velocity ,
Substituting the values,


Now KE (100% rotational) after 3.62s is:
KE = 
KE =
KE = 544J