Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
<span>Density is a measure of an object's </span>mass per unit of volume
Which means that it shows how much mass is contained within a volume of something.
F=ma
F=QE = 1.602e-19C*700N/C = 1.1214e-16N
1.1214e-16N = ma = 1.6726e-27kg * a
a = 6.702e10 m/s² along the direction of the field line
Based on Newton's principle, whenever objects A and B interact with each other, they exert forces upon each other.
When a horse pulls on a cart, t<span>he horse exerts a force only to the cart. But that force applies only to the cart, not to the horse.
The cart in turn exerts a force on the horse. But that force applies only to the horse, not the cart also.
</span>
There are two forces resulting from this interaction - a force on the horse and a force on the cart. T<span>he net force on the cart remains as it was --- a positive force in the direction of the horse's movement. Therefore, the cart begins to accelerate and move.</span><span>
</span>
Limiting factors are resources or other factors in the environment that can lower the population growth rate. Competition for resources like food and space cause the growth rate to stop increasing, so the population levels off. This flat upper line on a growth curve is the carrying capacity.