Answer:
Em₀ = 245 J
Explanation:
We can solve this problem with the concepts of energy conservation, we assume that there is no friction with the air.
Initial energy the highest point
Em₀ = U
Em₀ = m g h
The height can be found with trigonometry
The length of the pendulum is L and the length for the angle of 60 ° is L ’, therefore the height from the lowest point is
h = L - L’
cos θ = L ’/ L
L ’= L cos θ
h = L (1 - cos θ)
We replace
Em₀ = m g L (1- cos θ)
Let's calculate
Em₀ = 10 9.8 5.0 (1 - cos 60)
Em₀ = 245 J
Answer:
The answer is below
Explanation:
a) The volume of a sphere is:
Volume = (4/3)πr³; where r is the radius of the shell.
Given the outside radius of 2.60 cm and inner radius of a cm, the volume of the spherical shell is:
Volume of spherical shell =
cm³
But Density = mass / volume; Mass = density * volume.
Therefore, mass of spherical shell = density * volume
mass of spherical shell =
*
cm³
Mass of liquid = volume of inner shell * density of liquid
Mass of liquid = 
Total mass of sphere including contents = mass of spherical shell + mass of liquid
Total mass of sphere including contents (M) =
*
+
=
Total mass of sphere including contents (M) = (346 - 14.5a³) grams
b) The mass is maximum when the value of a = 0
M = 346 - 14.5a³
M' = 43.5a² = 0
43.5a² = 0
a = 0
<span>The isotope of an atom containing 40 protons and 51 neutrons suddenly has 2 neutrons added to it
That is X-93 so it will be
</span><span>Zirconium-93
</span>hope it helps
Answer:
atm
Explanation:
The pressure at the bottom of any liquid column is equal to product of density of the liquid , gravitational acceleration constant (g) and height of the water column
Thus, 
Substituting the given values, we get -
kg/m3
m/s^2
meters
atm
position 2
i know cause i already learned this