a. The speed of the pendulum when it reaches the bottom is 0.9 m/s.
b. The height reached by the pendulum is 0.038 m.
c. When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
<h3>Kinetic energy of the pendulum when it reaches bottom</h3>
K.E = 100%P.E - 18%P.E
where;
K.E(bottom) = 0.82P.E
K.E(bottom) = 0.82(mgh)
K.E(bottom) = 0.82(1 x 9.8 x 0.05) = 0.402 J
<h3>Speed of the pendulum</h3>
K.E = ¹/₂mv²
2K.E = mv²
v² = (2K.E)/m
v² = (2 x 0.402)/1
v² = 0.804
v = √0.804
v = 0.9 m/s
<h3>Final potential energy </h3>
P.E = 100%K.E - 7%K.E
P.E = 93%K.E
P.E = 0.93(0.402 J)
P.E = 0.374 J
<h3>Height reached by the pendulum</h3>
P.E = mgh
h = P.E/mg
h = (0.374)/(1 x 9.8)
h = 0.038 m
<h3>when the pendulum stops</h3>
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Thus, the speed of the pendulum when it reaches the bottom is 0.9 m/s.
The height reached by the pendulum is 0.038 m.
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Learn more about pendulum here: brainly.com/question/26449711
#SPJ1
1. is 75 km/h because 150 divided by 2 is 75
3. the second person since he ran the same distance in less time
4. a.True b.False c.True
Answer:

Explanation:
distance on terrain, 
- distance on the road,

- speed on terrain,

- speed on road,

<u>time taken on the terrain,</u>



<u>time taken to cover the distance on the road:</u>



<u>Now the distance covered on terrain in the total time:</u>




<em>is the distance the vehicle must target on the road to minimize the time taken in going off the road.</em>
I have no idea I am sorry someone will help you soon